1. Trace Collection

He is a master storyteller, the only one I ever heard who could tell a whole
story with only two grammatical subjects.

“Them sons-of-bitches,” he said, opening with his first subject, “was Mennon-
ites and wouldn’t fight in the last war—said they wasn’t afraid to work or die for
their country but wouldn’t kill anybody, so somebody, maybe for this somebody’s
idea of a joke, had them sent to the Smokejumpers. It turned out them sons-
of-bitches was farm boys and, what’s more, didn’t believe in using machines no
way— working was just for their hands and their horses, and them sons-of-
bitches took them shovels and saws and Pulaskis and put a hump in their backs
and never straightened up until morning when they had a fire-line around the
whole damn fire. Them sons-of-bitches was the world’s champion firefighters.”

His second grammatical subject he saved for the end. “The rest of us bastards,”
he said, "was dead by midnight.”

—Norman Maclean, Young Men and Fire

1.1 Introduction

Our goal is to evaluate disk layout policies. Because layout matures over weeks and months,

we need long-term file system and disk usage data. There are three primary methods for



generating file system requests: synthetic generation, benchmarks, and traces. Synthetic
generation is primarily useful when the characteristics of the workload are already un-
derstood. One of the goals of our study is to discover long-term characteristics to allow
synthetic models to be constructed. Likewise, benchmarks are useful only if one knows in
advance that the chosen benchmarks are representative of the actual workload and even
then most benchmarks are too short for our purposes. We could synthetically generate
long-term workloads by repeatedly running short benchmarks, but this is unlikely to pro-
duce realistic results since it does not model changes in input over time. In order to
understand the characteristics of long-term file system traffic, we must first examine data

from actual usage.

However, evaluation by replaying traces has its own set of difficulties. Traces are neces-
sarily bound to the environment from which they are collected, and because computing
environments change rapidly, the traces must be recent. In addition, most available traces
are too short to evaluate long-term file system behavior. For these reasons, we began col-
lecting our own traces in the summer of 1996. We currently have traces varying in length

from one month to one year from three different environments.

In this chapter, we describe the procedure we used to collect traces from three different
environments. After our traces were collected, a more recent set of traces was collected
from a different environment by Jacob Lorch. For many of the studies conducted in this
work, we use these traces to supplement our own. We describe these traces at the end of

this chapter.



1.2 Related Efforts in Trace Collection

Traces are frequently used to evaluate file system innovations, yet relatively few traces are
publicly available. This is due to both privacy concerns and the amount of effort required
to collect traces. Characterizing file system behavior is difficult due to both the wide range
of workloads and the difficulty in obtaining data to analyze. Obviously, no trace analysis
project has the scope to analyze all relevant features of all relevant workloads. Instead,

each study lets us understand a piece of the greater picture.

There are several levels at which traces can be taken ranging from static disk snapshots
to dynamic kernel tracing. In general, all trace collection efforts have to choose between
completeness and complexity. In the following sections, we describe different collection

methods used and the benefits and drawbacks associated with each.

The simplest traces consist of static snapshots of all files on disk. This method can be
implemented easily by running a find command to collect system metadata at one or
several frozen instants in time. Studies of this type are useful for studying distributions of
file attributes commonly stored in metadata, such as the directory structure and file name,
size, last access time, and last modification time [DB99, SFMF94, CM93, BBK91, Sat81,
Smi81]. The disadvantages to static traces are that they are not sufficient to study cache

behavior, detailed file access patterns, block level activity, or short-term behavior.

In comparison with static snapshots, traces that record the file system as it runs contain

more detailed information on file system activity but are more difficult to collect. The



simplest of these dynamic tracing techniques are non-invasive, such as snooping NFS traf-
fic off the network [Bla92, DMW194]. While these traces capture dynamic file system
activity, they are incomplete because they miss requests handled on the local hosts, such
as requests that hit in the cache. Also, artifacts of the network file system being measured
can affect these types of traces. For example, NFS [SGK*85] generates file system requests

to implement its cache coherence protocol.

Similarly, by interposing trace collection at the disk interface level, Ruemmler et al. col-
lected traces outside the file system [RW93]. These traces were taken from three HP-UX
servers for approximately 4.5 months and include only disk operations, not the higher level
file system calls. These traces are unique in tracing actual disk access patterns. They
clearly show the amount of disk accesses caused by metadata operations and virtual mem-
ory operations. However, because the traces are dependent on the particular file system
running on the traced machines, they are not useful for evaluating alternative file system

designs above the disk level.

Capturing complete file system activity at the file system level yields more detailed infor-
mation about file system usage. However, modifying the kernel to obtain local file system
behavior has its own set of drawbacks. First, the kernel source code is not always available.
Second, the modified kernels must be deployed to users willing to run their applications on
an altered kernel. Third, the overhead of collecting fine-grained traces must be kept low
so that overall system performance is not significantly degraded. Finally, because these
modifications are usually non-portable, the same work must be repeated for every platform

traced. Due to these limitations, most researchers limit their trace collection to only the



data that is necessary to perform specific studies. For example, the traces collected to
perform analysis of directory access behavior in [FE89] do not include file read or write
requests. Mummert et al. focused on results relevant to disconnected file system operation
[MS94]. Zhou and Smith collected traces on personal computers for research in low-power

computing [ZS99].

In 1985, Ousterhout et al. collected dynamic traces from three servers running BSD UNIX
for slightly over three days [OCH™*85]. Because the traces contained detailed access pat-
terns, this study was able to introduce a number of metrics to characterize file system
workloads. These metrics include run length, burstiness, lifetime of newly written bytes,
and file access sequentiality. We refer to this work as the BSD study. In 1991, Baker et
al. conducted the same type of analysis on four two-day sets of traces of the Sprite file
system [BHK91]. They collected these traces at the file servers and augmented them with
client information on local cache activity. For the rest of this paper, we refer to this work
as the Sprite study. These sets of traces include all read and write activity although the
exact times of the reads and writes is unknown. Metadata operations are not included.
The data analysis techniques developed in the BSD and Sprite studies were repeated in
several subsequent studies. In 1991, Bozman et al. repeated many of the Sprite studies
using traces from two separate IBM sites [BGW91]. This study confirmed that the results
from the Sprite study applied to non-academic sites. In 1998, these studies were repeated
on our own workloads [Ros98], and, in 1999, they were again repeated on three sets of
two-week traces taken from 45 hosts running Windows NT [Vog99]. This workload is close

to our NT workload, and for the analyses that are directly comparable (file size, file lifetime



and access patterns), our results are similar. Although the level of detail in these sets of
traces is sufficient for characterizing short-term file system behavior, the traces are not

long enough to study long-term file system characteristics.

A combination of features distinguish our traces from the above work. First, our traces
are long term. Because file system factors such as disk fragmentation mature over time
[MJLF84] [SS96], long-term traces are necessary to evaluate disk layout policies. Second,
our traces include three different workloads and include detailed traces of a database web
server. Third, individual reads and writes are recorded so that detailed information on
access patterns is available. Fourth, since metadata operations have a significant impact
on disk requests [RW93], our traces include metadata operations. In addition, our traces
include full pathnames for file references and exec system calls are traced so that it is
possible to investigate applications that cause file system activity. Finally, because our
traces were recently collected, we can compare our results with those of previous studies

to illustrate the change in patterns in file system activity over time.

1.3 Trace Collection

Our purpose in collecting traces was to study the effect of different layout policies over

time. To ensure that our traces could fulfill this purpose, we set these goals for our traces:

1. The traces should be long-term: weeks to months in duration.

2. The traces should be independent of the file system used on the traced hosts and



should include all information necessary for relevant layout policy decisions.

3. Trace collection should have minimal impact on users.

4. The trace collection mechanism should be scalable to a large number of hosts.

5. The traces should be taken from a variety of environments.

We explored several alternative methods for trace collection and ultimately chose the au-
diting system as the closest fit to these goals. In the following sections, we first present
an overview of the auditing system and then discuss how we designed the system to meet

each of our goals.

1.3.1 Methodology: The Auditing System

There are several levels at which traces can be taken: in the kernel, between the application

and the kernel, and on the network between client and server machines.

The simplest method is to monitor network traffic between clients and servers. However,
because file system requests sent over the network have already been processed by the
client’s file system, these traces are both incomplete and contain artifacts of the clients’

file system.

Tracing between the application and kernel involves snooping all application requests to the
kernel. This method can be easily implemented on some operating systems, for example,

those that support a /proc file system. Unfortunately, the machines available to us for



tracing ran the HP-UX 9.05 operating, which has no such support. Another approach
would be to compile a trace collection library with all applications to be traced. We ruled
out this approach since it would inconvenience users and would miss any applications that

were not re-compiled with the trace collection library.

For these reasons, we chose to collect traces at the kernel level despite the complexity
of this approach. To minimize kernel changes, we used the auditing subsystem to record
file system events. Many operating systems include an auditing subsystem for security
purposes. The auditing subsystem gets invoked after a system call is issued and before the
call executed. It can be configured to log specified system calls with their arguments and
return values. This is ideal for tracing since it catches the logical level of requests using
already existent kernel functionality. Unfortunately, it does not record kernel file system
activity, such as the paging of executables. The major problem we faced in using the
auditing system was that the HP-UX 9.05 version records pathnames exactly as specified
by the user. Users often specify paths relative to their current working directory rather
than the complete path. Since some disk layout policies use a file’s parent directory, we
needed to record the full pathname. We solved this problem by recording the current
working directory for each process and configuring the auditing system to catch all system
calls capable of changing the current working directory. These changes required only small
changes to the kernel (about 350 of lines of C code) and were wholly contained within the

auditing subsystem.

The benefits of using the auditing system as a tracing tool are twofold; it provides a method

of collecting a complete set of file system calls with low overhead and requires only small



changes to the kernel. In fact, for systems that implement the auditing system in such a
way that full pathnames are recorded for security monitoring purposes, any type of system

call could be traced without modifying the kernel at all.

Advantages of collecting the traces on the clients rather on the server are that local cache
hits are included and no burden is added to the server which is often already a bottleneck
in networked file systems. But recording on the client requires the tracing code to be
installed on many machines and complicates processing since all the individual traces
must be merged. In our environment, no machines that acted as file servers were traced.
However, unless all clients are traced, it is possible to miss accesses to files from non-traced
hosts. Although we did not collect traces on all clients, in the clusters traced, most users
tend to use the same host (or set of hosts) regularly, so it is likely that most activity for a

given user of the cluster is collected.

Since the traces are taken at the system call level, file system requests internal to the
kernel are not recorded. As a result, pathname lookup and reads and writes to executables
and memory-mapped regions are not included. Measurements by Ruemmler and Wilkes
show disk paging to swap partitions to be 0.4-1.8% of all disk traffic on hosts well-endowed
with memory and 16.5% on low-memory hosts [RW93]. However the impact of reading

executables and memory-mapped files is unknown.

Finally, although our original intention in recording complete pathnames was to record the
parent directory, having this information proved invaluable to understanding the traces

and the applications that cause specific file traffic patterns.



time
host id
process id
user id

system call number

length of all arguments

argument 1

argument n

Table 1.1: Trace Record Format. All trace records contain a header followed by any
arguments. The number and type of arguments is determined by the system call type. A
complete list of system calls traced and their arguments is shown in Table 1.7 at the end
of this chapter. For the unprocessed traces, the arguments are the same as those specified
by the system call. The system call number and argument length fields are each two bytes
long. All other fields are four bytes long.

The format of the trace records is shown in Table 1.3.1. Each record contains a header
followed by arguments. The header is a fixed length and contains six fields. The first field
contains the time the record was generated measured in seconds since January 1, 1970.
The following fields identify the host, user, and process that generated the record. The
next field contains the system call type. The system call type determines the number and
type of any arguments that follow the header. The last header field contains the length in
bytes of all the arguments for the record. In the raw traces, the arguments are those that
are provided by the system call. During postprocessing (described in the next section),
some of the arguments are changed. For example, file descriptor arguments are replaced by
identifiers for the files they reference. The complete list of traced calls and their arguments

is enumerated in Table 1.7 at the end of this chapter.
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1.3.2 Long-term Tracing

In order to make long-term trace collection feasible, we had to engineer the trace collection

process so that it could run continuously for several months without interruption.

On each traced host, we installed a modified kernel that wrote the auditing system records
to a local file. To ensure tracing continued to run over an extended period of time while the
hosts were constant use, we installed scripts on these hosts to manage the trace collection
process. These scripts checked for problems during tracing, restarted tracing after reboots,

and automatically migrated completed trace files to a collection host.

1.3.3 File System Independence

Because we traced at the system call level, our traces capture requests at a logical rather
than physical level. For example, each read request includes the exact byte range accessed

but not whether the request was cached or where the data blocks were located on disk.

We tried to include enough information in the traces so that they could be used with
both existing layout policies and any novel policies that we might wish to explore. To this
end, we included all file system requests, including metadata operations, and the complete

pathnames for all relevant requests.
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1.3.4 Impact on Client Resources

In order for trace collection to be tolerated by the users, it must have minimal impact
on the performance and resource usage of the machine being traced. We measured the
overhead of our tracing system on a compilation workload. Originally, the tracing code
added 11% overhead compared with the same benchmark without tracing. However, by
buffering trace records in the kernel and writing them out in large batches, we were able

to reduce the overhead to 1%.

On each host being traced, the trace log files were changed and compressed every hour by
a cron script. The compressed traces used an average of 3.2MB of local disk space per
day. The trace files were migrated off the clients nightly over an Ethernet to a collection
host. Hosts sent their trace files at staggered one minute intervals so that the network and
receiving host were not overwhelmed. Assuming an Ethernet’s effective bandwidth to be

5Mbps, sending 3.2MB per minute uses less than 10% of the network capacity.

In terms of storage, the compressed traces require on average 3.2MB per host per day.

Therefore, tracing 150 hosts for 6 months requires less than 100GB of disk space.

Hosts migrate their trace files to the trace collection server at a rate of one host per minute.
Since only a few networks are shared among all the hosts and these are heavily used during
the day, trace migration is done during the night. The least busy period for the traced
machines occurred between 4am and 7am. Since this period contains 180 minutes, we

could scale up to 180 hosts using this method.
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1.3.5 Environment

In order to meet our goal of tracing a variety of environments, we installed tracing on
three separate groups of Hewlett-Packard series 700 workstations running HP-UX 9.05.
The first group consisted of twenty machines located in laboratories for undergraduate
classes. These machines were used for editing, compiling, and running programs for class
projects, as well as for email, document processing and web browsing. For the rest of this
paper, we refer to this workload as the Instructional Workload (INS). The second group
consists of 13 machines on the desktops of graduate students, faculty, and administrative
staff of our research group project. We refer to this workload as the Research Workload
(RES). Of all our traces, the environment for this workload most closely resembles the
environment in which the Sprite traces were collected. These hosts were used for a wide
variety of tasks including document processing, program development, graphically display-
ing research results, email, and web browsing. The third set of traces was collected from
a single machine that is the web server for an online library project. This host maintains
a database of images using the Postgres database management system and exports the
images via its web interface. This server receives approximately 2300 accesses per day. We
refer to this workload as the WEB workload. The INS machines mount home directories
and common binaries from a non-traced Hewlett-Packard workstation. All other machines
mount home directories and common binaries from an untraced file server over an Ether-
net. We collected eight months of traces from the INS cluster (two semesters), one year of

traces from the RES cluster, and approximately one month of traces from the WEB host.
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Each host had 64MB of memory. The file cache size on these hosts at the time of trace
collection is unknown. However, since HP-UX 10 allows a maximum of half of memory to

be used by the file cache, we can assume that the file cache was maximally 32MB.

1.4 Postprocessing

To simplify replay, the trace files are postprocessed into a format more easily managed
by trace analysis programs. The main tasks of the postprocessor are to assign unique
identifiers to files, match file descriptors to file identifiers, and fix a number of problems
in the raw traces. By handling these tasks in the postprocessor, we were able to greatly

simplify programs that analyze the trace data.

One difficulty with the raw traces is that information tends to be distributed over several
trace records that may or may not appear near each other in the traces. For example,
many system calls have file descriptors as arguments. In order to match the file descriptor
to the actual file to which it refers, one must find the open or creat record that generated
the file descriptor. Tracking file descriptors is complicated by system calls that copy or
change file descriptors and by inheritance of file descriptors by child processes. Many of
the tasks of the postprocessor involve compiling this distributed information and recording

it with all relevant records.

The postprocessor also fills in incomplete information in the trace records generated by

the auditing system, described later. Most errors in this category affect not only the use
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of the records for tracing but would also adversely affect any system that uses the traces

for the security purposes for which the auditing system was designed.

1.4.1 Challenges

Because our traces were collected over a period of many months, we could not wait for
trace collection to complete before we started analyzing the trace data. Otherwise, not
only would valuable research time be wasted, but problems in the trace collection process
could go undetected. Because the postprocessor is a complex set of programs, it took many
iterations to debug. Obvious problems were easily detected and fixed by test programs.
However, with such a large quantity of traces, even highly improbable events eventually
occur. These cases are considerably more difficult to identify and correct since many of
them only occur after postprocessing several months worth of data. In order to analyze
recently collected traces and allow adequate time to fix problems with the postprocessor,
the postprocessing routines have to be able to complete at a much greater rate than the

traces are collected. As a result, the postprocessing routines have to be extremely efficient.

To speed postprocessing, we ported the postprocessor to a cluster of workstations. We
divided the postprocessing routines into two major phases: a parallel phase and a sequential
phase. The parallel phase was performed on the individual client traces before they were
merged together. To maximize parallelism, as much work as possible is done in this phase.
The traces are then merged together by timestamp and the sequential phase begins. The

only operations that must be done sequentially are the assignment of file identifiers, fileids,
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to nonlocal file system operations and the mapping of file descriptors to these fileids.
Obviously, it is the sequential phase that limits the scalability of postprocessing. The
sequential phase processes one day of traces for 30 hosts in about 30 minutes. This phase
scales linearly with the number of hosts, so it could process one day of traces from 150

hosts in about 2.5 hours.

Although distributing the processing improves performance, it also creates problems, no-
tably synchronization between machines. The configuration files passed between machines
are mounted on networked file systems. Because the NFS protocol used does not guarantee
consistency across different machines, these files could be read differently on different ma-
chines. Although this problem rarely occurs, because of the large volume of data processed,
it typically does occur at some unpredictable point before postprocessing has completed.
To avoid this problem, each program has to verify the validity of its configuration files

before reading them.

Similarly, file accesses during postprocessing that time-out due to network congestion or the
tardiness of the automounter could cause the postprocessing scripts to fail. Although these
errors are extremely rare, the large input size combined with the high load on the processing
machines combines to make the probability of an error occurring during postprocessing
more likely than not. Therefore, in order to make progress, the postprocessing routines

must periodically checkpoint their results.

The tasks performed by the postprocessor require a great deal of memory. The machine

designated for the sequential portion has 1GB of memory. In order to run the sequential
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portion of postprocessing in under 1GB of memory, every byte in every data structure

must be carefully allocated.

In summary, the postprocessor can be thought of as being programming complete. Because
of the immense number of operations and high load, obscure errors are not only possible
but likely—requiring the postprocessor to be highly robust. It has to use little memory
and have fast algorithms and requires efficient I/O libraries. It has to implement its own
synchronization and fault tolerance. However, the postprocessor succeeded in its goal to
simplify the trace analysis programs. Of the scores of such programs used to generate the

results in this report, none was as difficult to write as the postprocessor.

1.4.2 Tasks

Some of the tasks of the postprocessor are described in more detail in this section.

Corrupt Records

The first task of the postprocessor is to fix errors in the raw traces. One of the most
insidious problems is handling corrupted records. Corrupted records are caused when the
logging of an audit record is interrupted by another system call or when the auditing system
is switched on or off. To eliminate these corrupted records, the postprocessor checks the
range of values of several header and argument fields. Any record containing a field with an
invalid value is removed. We detect that less than 0.01% of the trace records are corrupted.

While this rate is acceptably low, a single error can cause the rest of the trace file to become
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unreadable. To prevent this cascading effect, the postprocessor scans the following trace

input one byte at a time until it finds the next valid header.

Clock Adjustments

To appropriately handle access to shared files, the trace records are sorted by global time.
The time value in each record header is set from the system clock on each machine. Ideally,
this value would be non-decreasing throughout the traces, however, since administrators
and system daemons can reset the clocks on their machines, this is not always the case.
Although clock adjustments were infrequent in all traces, occasionally several clock resets
would occur in succession on the INS cluster. The INS cluster uses a network daemon to
synchronize the clocks of all machines in the cluster. The network daemon records the
synchronized time in a file. Periodically, another daemon reads this value and updates
the system clock. If the network daemon dies or is unable to contact the cluster time
server, the time stored in the file is not updated and the other daemon continuously resets
the system clock to the stale time value recorded in the file. The times in trace records
logged during these events jump back repeatedly, however, the records are in the correct
chronological order on each machine. For this case, the actual time is likely to be within a
second of the time of the last record. The postprocessor changes the time in these records
to be the same as the time in the last record because it produces a better estimate of the
actual time and prevents time from regressing. However, since the actual time may be
later than the previous record’s time and because some measurements are sensitive to the

number of events that occur within a second, times corrected in this manner are marked
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by negating the time value. Programs that require accurate counts of events per second

can ignore time spans that contain records with negative time values.

Tracing Artifacts

Another task of the postprocessor is to remove trace records caused by the trace collection
process. Writing individual trace records to the log file occurs in the kernel and so is not
traced. However, several processes that manage the trace log files run at user level. These
processes check that there is enough disk space for the trace records, switch the trace log
files, and send completed trace files to a collection server. Each of these processes is started
by the cron daemon. The postprocessor recognizes these processes by the file name used
for execution. It marks the process identifier and removes all records with this process
identifier until the process exits. Child processes forked by a marked process are also
marked and excised from the traces. After postprocessing, only the fork and exit records
remain for each script. The exit records are left to simplify trace processing routines that
track forked processes. The fork calls could be removed by buffering trace records until the
process executes a program, however, since an unbounded number of records from other
processes can intervene between a process’s fork and its execution call, removing these
records would significantly complicate the postprocessor. We have measured the residual
records to be only 0.04% of the postprocessed traces on an average machine, so we believe

that leaving these records in the traces is acceptable.
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Pathnames

As part of our trace collection goals, we require complete pathnames for all files in the
trace records. As previously mentioned, we track the current working directory of all
processes in the kernel’s auditing system so that relative pathnames can be translated
into full pathnames as the traces are collected. However, two system calls can disrupt
this process. The chroot system call changes the root directory for the calling process
and all of its children. To simplify the trace recording code in the kernel, pathname
updates caused by chroot calls are performed by the postprocessor. The other system call
that disrupts the kernel’s knowledge of the current working directory is the fchdir call.
This call is equivalent to the call to change directories (chdir) except that it takes a file
descriptor as an argument rather than a pathname. Because the pathname referenced by
the file descriptor could not be found in the kernel without making changes outside of the
auditing system, this task was deferred to the postprocessor. The postprocessor tracks all
fchdir calls, matches the file descriptor to the appropriate complete directory path, and

updates the pathnames of the calling process and all of its children.

Unique File Identifiers

The postprocessor assigns a unique file identifier to each file accessed in the traces. The
postprocessor identifies unique files based on their file system, inode number, and path-

name.

The simplest way to identify unique files is by using the file’s pathname. However, there
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are several problems with this approach. First, the same pathname on different hosts may
refer to different files. For example, the filename /tmp/foo refers to a different file on
each host. Further, shared files can be referred to by different names depending on their
mount points. Second, symbolic and hard links may refer to the same file by different
pathnames. Because the traced file systems contain a large number of symbolic links,
this would introduce a non-negligible number of errors. Third, because the pathnames
are large, tracking all files by the full pathname would significantly increase the memory

footprint of the postprocessor.

Another approach to tracking unique files is to use the file’s inode number. Because each
file system has its own set of inode numbers, the postprocessor must first determine the

file system for the file.

Each pathname is assigned a file system number (or device number) by consulting a static
table of mount paths. This is the least automated and therefore most fragile part of post-
processing; it requires checking the mount tables of each client by hand and incorporating
the mounted systems into the postprocessing code. Files accessed through symbolic links
that span file systems are incorrectly recorded as if the data were stored on the file system
of the symbolic link rather than the file system where the data actually reside. We mea-
sured the number of such symbolic links on several of our file systems and found them to
be less than 1% of all files, so we do not believe this inaccuracy significantly affects results

generated from the traces.

Once the device has been determined, a file identifier is assigned using the file system’s
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inode numbers to distinguish files. A problem with using inode numbers to uniquely
identify files is that, in the HP-UX auditing system, trace records for files created by
the system calls creat or open contain the inode number of the file’s parent directory
rather than that of the file itself. For files created via the creat system call, we assign a
unique identifier to the file and record the file’s pathname. The next time a record with
this pathname is processed, the postprocessor updates its database with the correct inode
number to unique file identifier. The situation is more complex for open calls with the
mode argument set to CREATE. These files may or may not exist. If the file already exists,
then the record is a lookup open and the inode number is correct for this file. However, if
the file does not already exist, the file is created and the inode number is that of its parent
directory. For the assignment of the file identifier, the postprocessor uses several heuristics
to distinguish these cases. For example, if the inode number already exists and is known to
refer a directory, the opened file must be a create. If the inode number already exists and
is known to refer to a file, the opened file must be a lookup. If the postprocessor cannot
determine whether the open is a create or a lookup, it is assumed to be a create. If incorrect,
this assumption causes only minimal inaccuracies in the traces. For example, if the file was
accessed previously in the traces, then previous accesses will appear to be to a different file.
However, since these previous accesses did not provide the postprocessor with sufficient
information to determine whether the file is a file or directory, these previous accesses
could only have been produced by a small set of system calls that only access the file’s
metadata. These calls are: symlink, rename, chmod, chown, utime, access, stat,

lstat, getacl, setacl, getaccess, lstat. If we had reversed our policy and assumed

22



the open were a lookup, then all following operations on the file would be incorrectly
assumed to be to the file’s parent directory. Further, if the same error were made for other
files in the same directory, multiple files and their parent directory would appear to be to

a single file.

Mapping File Descriptors to File Identifiers

Many file system calls use a process-specific file descriptor as an argument rather than the
filename. The postprocessor tracks all mappings from file descriptor to file identifier and

replaces file descriptor arguments with the appropriate device-fileid pair.

After this translation, the system calls dup, dup2, and fcntl are removed from the traces
since they only map file descriptors onto other file descriptors and do not contain file access

information.

If the postprocessor cannot match a file descriptor to a fileid, the fileid is set to the sentinel
value UNKNOWN. Many unknown files are caused by fstat calls to files opened by system
processes that start before the auditing system when the host is booted; because an fstat
call only contains a file descriptor, if the file’s open is missed, subsequent calls cannot be
matched to the file to which the descriptor refers. The number of records referring to
unknown files is 3% for INS, 10% for RES, and 0.1% for WEB. For RES, 97% of records
containing unknown files are £stat calls. For all workloads, the number of reads and writes

to unknown files is less than 1%.
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Offset

Unprocessed read and write records have as arguments only the file descriptor and number
of bytes accessed. The file offset is stored with the file descriptor data structure in the
kernel. The postprocessor tracks the file offset for each open file descriptor and adds it to
the read and write records. Afterwards, the 1seek call, which does not access data but

simply changes the file position, is removed from the traces.

Closes

For each open file on a host, the kernel maintains an open file data structure. A number
of different file descriptors may refer to this data structure. When the final reference has

been removed, the data structure is released.

Releasing references to file descriptors occurs either explicitly, through the close system
call, or implicitly, for example, when a process exits or a file descriptor overwrites another

file descriptor.

The postprocessor tracks all references to open files and both implicit and explicit closes.
It adds an argument to the close system call indicating whether the close releases the
final file reference for the host or process. If the final reference to a file is closed implicitly,

an implicit close record is added to the trace.
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Privacy

In order to preserve privacy, the user identifier is altered by a one-way mapping function
as the traces are processed. However, user identifiers zero through ten are not altered since
these accounts are administrative in nature rather than personal and may provide insight
into the trace analysis. Because pathnames themselves may compromise privacy, once a
file is given a unique identifier, its pathname is removed from the traces and stored in a

separate file.

1.5 Windows NT Traces

In addition to our own traces, we use traces collected by Jacob Lorch [LS00]. These
traces were collected from eight desktop machines running Windows NT 4.0. Two of these
machines are 450MHz Pentium IIIs, two are 200MHz Pentium Pros, and the other four are
Pentium IIs ranging from 266—400MHz. Five of them have 128MB of main memory, while
the others have 64, 96, and 256 MB. These hosts are used for a variety of purposes. Two
are used by a crime laboratory director and his supervisor, a state police captain; they use
these machines for time management, personnel management, accounting, procurement,
e-mail, office suite applications, and web browsing and publishing. Another two are used
for networking and system administration tasks: one primarily runs an X server, e-mail
client, web browser, and Windows NT system administration tools; the other primarily
runs office suite, groupware, firewall, and web browsing applications. Two are used by

computer science graduate students as X servers as well as for software development, mail,
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and web browsing. Another is shared among the members of a computer science graduate
research group and used primarily for office suite applications. The final machine is used
primarily as an X server, but occasionally for office suite and web browsing applications.
Despite the different uses of the NT machines, the results are similar for all the machines,

so we include them together as one group.

1.6 Windows NT Collection Methodology

Lorch collected the Windows N'T traces using a tool he developed that traces not only file
system activity, but also a wide range of device and process behavior [LS00]. We focus

here on the aspects of the tracer relevant to file system activity.

Lorch performs most of the file system tracing using the standard mechanism in Windows
NT for interposing file system calls: a file system filter driver. A file system filter driver
creates a virtual file system device that intercepts all requests to an existing file system
device and handles them itself. This filter device merely records information about the
request, passes the request on to the real file system, and arranges to be called again when
the request has completed so it can record information about the success or failure of the

request.

A Windows NT optimization called the fastpath complicates tracing these file systems.
The operating system uses this optimization whenever it believes a request can be handled

quickly, for example, with the cache. In this case, it makes a call to a fast-dispatch function
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provided by the file system instead of passing requests through the standard request path.
In order to intercept these calls, Lorch implemented his own fast-dispatch functions to

record any calls made this way.

There were some challenges in converting these traces to a format comparable with the
UNIX traces because they are taken at the file system level rather than the system call
level. The first problem arises when the file system calls the cache manager to handle a read
request, and there is a miss. The cache manager fills the needed cache block by recursively
calling the file system. We want to elide the recursive requests because they do not reflect
actual read requests. We distinguish them by three of their properties: they are initiated
by the kernel, they have the no-caching flag set (in order to prevent an infinite loop), and
they involve bytes that are being read by another ongoing request. The second problem
is separating a reads and writes caused by explicit requests from those caused by kernel
activity. We distinguish kernel-initiated read-ahead by looking for read requests with the
following four properties: they are initiated by the kernel, they have the no-caching flag
set, they do not involve bytes currently being read by another request, and they are made
to a file handle that was explicitly read earlier. If a request is initiated by the kernel with
the no-caching flag set and it does not belong to any of the previous characterizations, we

classify it as a paging request.

Finally, the file system interface of Windows NT is quite different from that of UNIX. For
instance, there is no stat system call in Windows N'T, but there is a similar system call:
ZwQueryAttributesFile. For the purpose of comparison, we have mapped the request

types seen in Windows NT to their closest analogous system calls in UNIX.
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1.7 Summary

For all large systems, the issue of scale not only affects the effort involved but also the
fundamental design. Every piece of the trace collection and processing routines required

additional support code to ensure progress in spite of errors.
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system call

call number

arguments in processes traces

exit 1 none

fork 2 pid flag

read 3 dev fid offset bytes

write 4 dev fid offset bytes

open 5 dev fid fd ftype fstype owner size nlinks ctime mtime atime mode
close 6 dev fid mode

creat 8 dev fid fd ftype fstype owner size nlinks ctime mtime atime mode
Iink 9 dev fid

unlink 10 dev fid

execv 11 dev fid

chdir 12 dev fid

chmod 15 dev fid

chown 16 dev fid

Iseek 19 removed from processed traces
smount 21 dev fid

umount 22 dev fid

utime 30 dev fid

access 33 dev fid

sync 36 none

stat 38 dev fid

Istat 40 dev fid

dup 41 removed from processed traces
reboot 55 none

symlink 56 dev fid

rdlink 58 dev fid

execve 59 dev fid

chroot 61 dev fid

fentl 62 removed from processed traces
viork 66 pid flag

mmap 71 dev fid

munmap 73 dev fid

dup?2 90 removed from processed traces
fstat 92 dev fid

fsync 95 dev fid

readv 120 dev fid offset bytes

writev 121 dev fid offset bytes

fchown 123 dev fid

fchmod 124 dev fid

rename 128 dev fid

trunc 129 dev fid newsize

ftrunc 130 dev fid newsize

mkdir 136 dev fid

rmdir 137 dev fid

Tockf 155 dev fid function size

Isync 178 none

getdirentries 195 dev fid

vismount 198 dev fid

getacl 235 dev fid

fgetacl 236 dev fid

setacl 237 dev fid

fsetacl 238 dev fid

getaccess 249 dev fid

fsctl 250 removed from processed traces
tsync 267 dev fid

fchdir 272 dev fid

Table 1.2: System Calls Traced This table shows all traced calls and their arguments

after postprocessing.
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1.8 Notes on Arguments

Most calls in Table 1.2 have the arguments dev and fid, where dev is the device number of
the file system and fid is a unique file identifier on that system. A given device-fileid pair

is unique throughout the trace.

The fork and vfork calls have two arguments: a process identifier and a flag which is
nonzero if this is the child. If this is the child, the first argument is the parent’s process

id. If this is the parent, the first argument is the child’s process id.

The open and creat calls were modified to record additional information. They have ten
arguments in addition to the device and fileid. The fd field is the file descriptor returned
by the call, the ftype is the file type (regular, directory, symbolic link, or empty directory),
the fstype is the type of file system (local or NFS), owner is the user identifier of the file’s
owner, size is the file size in bytes, nlinks is the number of hard links, ctime, mtime, and
atime refer to the last inode change time, modify time and access time respectively. The

mode refers to the open/create mode.

The mode field on the close call indicates whether this is the final close for this file.
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